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Anisotropic effects in highly scattering media
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In this paper, we study anisotropic scattering and light propagation models applicable to diffuse optical
tomography. We propose a model for anisotropic scattering in the radiative transfer framework and derive the
corresponding anisotropic diffusion model. To verify the anisotropic diffusion model, we consider the case of
a simple anisotropic scattering model also presentable within the diffusion approximation. For numerical
computations, we present a three-dimensional~3D! anisotropic Monte Carlo model and 2D finite element and
boundary element solutions of the anisotropic diffusion model, and compare the results of the simulations.
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I. INTRODUCTION

Optical tomography@1# is a relatively new and developin
noninvasive medical imaging modality. In optical tomogr
phy, measurements of scattered and transmitted near-infr
light on the surface of the body are used for reconstruction
the internal distribution of optical properties inside the bo
The strong scattering of near-infrared light in most hum
tissues renders the related inverse problem of the estima
of the optical properties a highly involved one, requirin
advanced modeling and reconstruction techniques. One p
in theoretical developments toward a more succesful esti
tion is the investigation of light propagation models that c
be used to predict boundary measurements more faithfu

Several human tissue types have properties that dep
not only on location but also on direction. One example
the white matter of the brain, where the orientation of t
axon fiber bundles gives rise to directionally dependent
fusion properties of water. Another example of structural
isotropy is the muscle fibers. Anisotropic light propagati
has been measured in chicken breast tissue@2# and human
skin @3# and dentin@4#; hence there is good reason to belie
that such structural anisotropy is seen in the optical regi
Proper modeling and understanding of the effects of ani
ropy may provide valuable information for imaging and r
construction in optical tomography.

A commonly used model for light propagation in optic
tomography is the isotropic diffusion equation, which can
derived from the equation of radiative transfer under cert
conditions often met in biological tissue. To handle anis
tropic media, in@5#, an anisotropic form of the diffusion
equation was derived and used to investigate the effect
anisotropy on image reconstruction. Another diffusionli
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approach to model anisotropic light propagation presente
@6# was based on the continuous-time random walk mod

In this paper, we consider in more detail an anisotro
scattering and light propagation model based on the radia
transfer equation. We present a possible model for an
tropic scattering applicable in the radiative transfer fram
work and then derive the corresponding anisotropic diffus
approximation. In our numerical experiments, the anisotro
diffusion equation is solved using both finite element a
boundary element methods, and the results compared
Monte Carlo simulation based on the radiative transfer eq
tion and the anisotropic scattering model.

II. SCATTERING AND LIGHT PROPAGATION MODELS

A. Radiative transfer equation

In optical tomography light propagation is generally mo
eled using the radiative transfer equation~RTE! @7#, also
known as the Boltzmann equation. For time dependent pr
lems, this is written

S 1

c

]

]t
1 ŝ•¹1ma~r!1ms~r! Df~r,ŝ,t !

5ms~r!E
S2

Q~ ŝ,ŝ8,r!f~r,ŝ8,t !dŝ81q~r,ŝ,t !,

~1!

where ma and ms are the absorption and scattering coef
cients, respectively,f(r,ŝ,t) is the radiance at positionr
with direction of propagationŝ, c is the speed of light,q
denotes the source term, andQ is thephase functionfor the
scattering. In operator form we write this as

1

c

]f

]t
1T ~ma,ms!@f#5S~ms!@f#1q. ~2!

The scattering coefficient represents the probability d
sity per unit volume of a scattering event. The phase funct
©2003 The American Physical Society08-1
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or the differential scattering kernelQ represents the prob
ability density of a particle scattering from directionŝ8 into
ŝ. In isotropic media, it is assumed to be stationary—i
dependent only on the angle between incoming directionŝ8
and outgoing directionŝ. Then we can write

Q iso~ ŝ,ŝ8,r![Q~ ŝ• ŝ8,r!.

In anisotropic media this is no longer the case. The ques
then arises as to the appropriate form forQ( ŝ,ŝ8,r).

B. Scattering phase function

1. Properties of the scattering phase function

The following properties of the phase function are app
ent on physical grounds:~1! the probability density of scat
tering cannot be negative,

Q~ ŝ,ŝ8!>0 ; ŝ,ŝ8PS2, ~3!

~2! there is reciprocity of light propagation,

Q~ ŝ,ŝ8!5Q~2 ŝ8,2 ŝ!, ~4!

and ~3! the probability of scattering over the sphere is un
regardless of the incoming radiation direction,

E
S2

Q~ ŝ,ŝ8!dŝ51 ; ŝ8PS2. ~5!

2. Isotropic scattering

In the isotropic case a convenient model forQ iso is the
Henyey-Greensteinfunction @8#

H3~ ŝ• ŝ8;g!5
1

4p

12g2

~11g222gŝ• ŝ8!3/2
, ~6!

which has the useful property that its Legendre expansio
given by powers of the parameterg:

Q lªE
S2

Pl~t!Q~t!dŝ85gl , ~7!

and ~using an addition theorem for Legendre polynomia!
we have the expansion

H3~ ŝ• ŝ8;g!5(
l

`

(
m52 l

l

gl Ȳl ,m~ ŝ8!Yl ,m~ ŝ!, ~8!

where Yl ,m are the spherical harmonics. HeregP(21,1)
serves as a measure of the forward scattering bias, wig
50 corresponding to uniform scattering.1

The two-dimensional analog of this function is

1The factor g is frequently termed theanisotropy factorwhen
considering the directionally independent scattering case. Howe
we will use the termbias factorto avoid confusion.
03190
.,

n

r-

is

H2~w,w8;g!5
1

2

12g2

11g222g cos~w2w8!
. ~9!

Note thatH2 is not simply the integral over the azimuth
direction of H3 . H2 has a Fourier series representati
@rather than the Legendre series of Eq.~7!#:

H2~w,w8!5
1

2p
1

1

p (
n51

`

gn cos@n~w2w8!#. ~10!

3. Anisotropic scattering

As a model of the anisotropic case consider the case o
infinite cylinder oriented along thez axis @3#. If we assume
that the direction of scattering is unchanged inz we have the
model

Qaniso~ ŝ,ŝ8!5Q~q,q8,w,w8;g'!

5d~ cosq2 cosq8!H2~w,w8;g'!. ~11!

This has the requisite properties~3!–~5!. We might also
choose a proper~symmetric! function Z(q,q8) such that

E
0

p

Z~q,q8! sinqdq51

in place of thed function in Eq.~11!. Figure 1 illustrates this
model for anisotropic scattering.

By writing the spherical harmonics

Yl ,m~q,w!5Pl
m~x!eimw, x5 cosq,

wherePl
m(x) are the associated normalized Legendre po

nomials, it is easily verified that

E
S2

Qaniso~ ŝ,ŝ8!Yl ,m~ ŝ8!dŝ85g'
umuYl ,m~ ŝ!

and

E
S2

Qaniso~ ŝ,ŝ8!Ȳl ,m~ ŝ!dŝ5g'
umuȲl ,m~ ŝ8!,

so we have the biharmonic expansion
er,

FIG. 1. A schematic representation of anisotropic scattering.
main direction of anisotropy is parallel to the axis of the cylind
The component of light parallel to the axis is preserved in the s
tering, whereas the perpendicular component is randomly orien
forming a cone shape for the possible scattering directions.
8-2
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Qaniso~ ŝ,ŝ8!5(
l

`

(
m52 l

l

g'
umuȲl ,m~ ŝ8!Yl ,m~ ŝ!. ~12!

C. Diffusion approximation

1. Isotropic diffusion approximation

A standard approximation method for the RTE is to e
pand the radiancef and the source termq in Eq. ~1! into
spherical harmonics and truncate the series. The sphe
harmonics expansions can be written as

f~r,ŝ!5(
l

`

(
m52 l

l

f lm~r!Yl ,m~ ŝ!, ~13!

q~r,ŝ!5(
l

`

(
m52 l

l

qlm~r!Yl ,m~ ŝ!. ~14!

Inserting the isotropic scattering phase function~8! in the
operatorS in Eq. ~2! yields the expansion

S~ms!@f#5ms(
l

`

(
m52 l

l

glf lm~r!Yl ,m~ ŝ!. ~15!

For the diffusion model the spherical harmonics exp
sion is taken only up to first order. Forf, truncating the
series~13! at l 51 yields after some manipulation

f~r,ŝ,t !5
1

4pES2
f~r,ŝ8,t !dŝ81

3

4p
ŝ•E

S2
ŝ8f~r,ŝ8,t !dŝ8.

~16!

Similarly, the first order approximations for Eqs.~14! and
~15! are obtained by truncating the series atl 51.

Next, introducing some standard notation, thephoton den-
sity is defined as

F~r,t !5E
S2

f~r,ŝ,t !dŝ ~17!

and thephoton currentas

J~r,t !5E
S2

ŝf~r,ŝ,t !dŝ, ~18!

while the corresponding source terms are theisotropic and
dipole terms

Q0~r,t !5E
S2

q~r,ŝ,t !dŝ, ~19!

Q1~r,t !5E
S2

ŝq~r,ŝ,t !dŝ. ~20!

By integrating the RTE~1! and the RTE multiplied byŝ
over S2 and using the first order approximations for the
diancef and the source termq and the notation in Eqs
~17!– ~20!, we arrive after some lengthy calculations at a
of coupled equations:
03190
-

cal

-

-

t

S 1

c

]

]t
1ma~r! DF~r,t !1¹•J~r,t !5Q0~r,t !, ~21!

S 1

c

]

]t
1ma~r!1~12g!ms~r! D J~r,t !1

1

3
¹F~r,t !5Q1~r,t !.

~22!

Equations~21! and ~22! are termed theP1 approximation.
To get a single second order partial differential equation
make two more simplifications, assuming that]J/]t is neg-
ligible in Eq. ~22! ~or, alternatively, proportional toJ) and
that the anisotropic source terms are zero, i.e.,Q150. Then

J52D¹F, ~23!

where thediffusion coefficientis defined by

D5
1

3~ma1ms8!
~24!

and ms85(12g)ms is the reduced scattering coefficient. Fi-
nally, we arrive at the diffusion equation as normally used
optical tomography:

1

c

]

]t
F~r,t !2¹•D~r!¹F~r,t !1ma~r!F~r,t !5Q0~r,t !.

~25!

2. Anisotropic diffusion approximation

Utilizing Eq. ~12! we have

S~ms!@f#5ms(
l

`

(
m52 l

l

g'
umuf lm~r!Yl ,m~ ŝ!.

The diffusion equation results from the termination of th
series atl 51. Employing the standard derivation, we get t
anisotropic diffusion equation

1

c

]

]t
F~r,t !2¹•D~r!¹F~r,t !1ma~r!F~r,t !5Q0~r,t !,

~26!

where thediffusion tensoris given by

D5
1

3
@~ma1ms!I2msS1#21

with

I5S 1 0 0

0 1 0

0 0 1
D

and

S15S g' 0 0

0 g' 0

0 0 1
D .
8-3
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We can also consider the case where we imagine a m
ture of oriented fibers with densityf ms and isotropic scatter
ers with density (12 f )ms ~wheref is a fraction 0< f <1).2

Let the latter have biasg0. The resulting diffusion tensor wil
be

S15S f g'1~12 f !g0 0 0

0 f g'1~12 f !g0 0

0 0 f 1~12 f !g0

D .

To obtain the case where the fibres are oriented al
another directionŝ15(z,j) we only need to rotate the tenso

D→RD RT.

3. Frequency domain

A common experimental method is to modulate the int
sity of the light source with a radio-frequency signal. Fo
source function modulated with angular frequencyv the dif-
fusion equation can be written in the frequency domain
taking a Fourier transform of the time domain diffusio
equation~26!:

2
iv

c
F~r;v!2¹•D~r!¹F~r;v!1ma~r!F~r;v!5Q0~r;v!,

~27!

whereF(r;v) is the complex density arising from the inte
sity modulated partQ0(r;v) of the source term.

4. Source and boundary conditions

In this work, we use the so called collimated source
proximation @9#, where the light source is modeled with
collimated pencil beam perpendicular to the surface. In
approximation, we write the source term as a point sou
below the surface:Q0(r;v)5Q0(v)d(r2rs), where rs is
the source position. For the boundary condition, we assu
that the inward directed current at each point on the bou
ary is zero. Within the diffusion approximation, this assum
tion leads to a so-called Robin boundary condition:

F12n̂•D¹F50, ~28!

wheren̂ is the outward unit vector normal to the surface a
the refractive index is assumed to be 1. The boundary d
consist of measured outward fluxGout52n̂•D¹F at points
rm , the optode locations, on the boundary]V. Using the
boundary condition~28!, the outward flux within the diffu-
sion approximation is simplyGout(rm)5 1

2 F(rm).

2Technically we might have to consider more carefully the me
ing of the scattering coefficient for fibers since it may be directio
ally dependent too. See@3# for a fuller discussion.
03190
x-

g

-

y

-

is
e

e
d-
-

ta

III. NUMERICAL EXPERIMENTS

In our numerical experiments, we compare the resu
from a Monte Carlo simulation based on the radiative tra
fer model and from the finite element~FEM! and boundary
element~BEM! methods based on the diffusion model. T
Monte Carlo simulations were performed in a thre
dimensional~3D! cylinder oriented parallel to thez axis,
with a cross section as depicted in Fig. 2, and the FEM
BEM simulations in an equivalent 2D circle. The photons a
incident on the domain at the positionh50° on the bound-
ary, and measured all around the boundary of the domai

The outer- and innermost layersV1 andV3 in the circle
are isotropic, and the middle layerV2 is anisotropic with the
direction of anisotropy parallel to thex axis as illustrated by
the horizontal stripes. In the isotropic layers the scatterin
assumed to be uniform, i.e., the forward scattering bias
assumed to have a valueg50. The anisotropic layer is as
sumed to consist of a mixture of oriented fibers~density f,
direction of scattering unchanged! and isotropic scatterer
@density (12 f ), biasg050]. The parameter values used
the simulations are listed in Table I.

A. Monte Carlo simulation

In the Monte Carlo simulation, the propagation of a ph
ton or a photon package is simulated through the medi
This is done by following the photon’s path and sequentia
modeling each event the photon undergoes during its tra
in the medium.

The anisotropic Monte Carlo simulation code used h
was based on an isotropic code@10# and proceeds in the
following way. First, a photon package is launched into t

-
-

TABLE I. The parameter values used for numerical calculation

Isotropic media Anisotropic media

ma 0.1 mm21 0.1 mm21

ms 10 mm21 10 mm21

g 0
f 0.9

g0 0
g' 0

FIG. 2. Geometry used in the simulations.
8-4



io

e
io
he
w
e
ke
g
p
-
i-

d
.
m
p

yl-
f t
e
ca
rt
s
st

th
a-

r
e

e

n

te

sh

i-
en-
nd

con-

e
-

d,

ANISOTROPIC EFFECTS IN HIGHLY SCATTERING MEDIA PHYSICAL REVIEW E68, 031908 ~2003!
domain perpendicular to the boundary at the source posit
Subsequently, at each step, part@12exp(2mal )# of the pack-
age is absorbed, wherel is the propagation length. Th
propagation length is drawn from an exponential distribut
with mean proportional to the scattering coefficient. In t
isotropic medium, the new propagation direction is dra
from a uniform probability distribution in solid angle. In th
anisotropic medium, an anisotropic scattering event ta
place with probabilityf; otherwise an isotropic scatterin
event is modeled as in the isotropic layers. In the anisotro
scattering, thex component of the direction vector is pre
served and only theyz components are redrawn from a un
form distribution.

In the Monte Carlo simulation, the source was assume
be located at a single point (215,0,0) on the boundary
However, to compare the results with the 2D diffusion co
putations, the detectors were modeled as line detectors
allel to the axis of the cylinder on the boundary of the c
inder, and the detected light was recorded as a function o
boundary position angleh only. The phase shift and th
complex intensity of the package on the boundary were
culated based on the path length of the package. The ape
of the cylinder in thez direction was 5 mm, and photon
exiting from the ends of the cylinder were recorded as lo

B. Finite element method

For implementing the finite element method, we use
so-called Galerkin formulation. First, we write the vari
tional formulation of the diffusion equation~27!. By multi-
plying Eq.~27! by a test functionc, integrating by parts ove
V, and using the Gauss and Green’s theorems, we arriv
the weak formulation of the diffusion equation: FindF such
that

E
V

¹c•D¹Fdr1 E
V

S ma2
iv

c DcFdr1 E
]V

1

2
cFdS

5Q0c~rs! ~29!

; cPH1(V), whereH1(V) is a predefined function spac
~Sobolev space! for the test functions. In Eq.~29!, the Robin
boundary condition~28! and the collimated source conditio
have been taken into account.

In the finite element approximation, the domainV is di-
vided into finite elements and the solution is approxima
by nodal-based basis functions,

F~r!' (
j 51

Nn

a jc j~r!, ~30!

whereNn is the number of nodes in the finite element me
By choosing the test functionc in Eq. ~29! to be one of the
basis functions, we arrive at the matrix equationAa5b,
whereA is theNn3Nn symmetric matrix with entries
03190
n.

n

n

s

ic

to

-
ar-

he
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.

e

at

d

.

Aj ,,5 E
V

¹c j•D¹c,dr1 E
V

S ma2
iv

c Dc jc,dr

1 E
]V

1

2
c jc,dS, ~31!

andb is anNn–vectorb j5Q0c j (r s).
In two dimensions, we write the diffusion tensorD as

D~r!5R~r!diag@l1~r!,l2~r!#R~r!T, ~32!

whereR(r) is a 232 real orthogonal matrix, and

l j~r!5
1

3$ma~r!1@12bj~r!#ms~r!%
, j 51,2. ~33!

In the isotropic case we have simplyb1
iso5b2

iso5g50. In the
anisotropic case considered here, we haveb1

aniso5 f 1(1
2 f )g05 f andb2

aniso5 f g'1(12 f )g050.
The representation~32! can also be interpreted as an e

genvalue decomposition of the diffusion tensor. The eig
valuesl j , j 51,2, present the strength of the anisotropy, a
the direction of anisotropy is confined in the matrixR.

C. Boundary element method

In the BEM formulation, we assume that the bodyV is
divided into nested subdomainsV i , 1< i<n, whereV1 is
the outermost one. Each subdomain is characterized by
stant material parameters. LetDi and ma,i denote the diffu-
sion tensor and absorption coefficient inV i . We denote

ki5~ma,i2 iv/c!1/2,

where the branch of the square root is chosen so that Rki
.0. The Green’s functionsGi corresponding to each subdo
main are defined as solutions of the equations

¹•Di¹Gi~r ,r 8!2ki
2Gi~r ,r 8!52d~r2r 8! in R2

with the asymptotics

Gi~r ,r 8!u ur u→`50.

By a change of variablesr→ r̃5Di
21/2r , one can verify that

Gi can be written as

Gi~r ,r 8!5
i

4uDi u
H0

(1)~ iki ur2r 8u i !5
1

2puDi u
K0~ki ur2r 8u i !,

whereK0 is the modified Bessel function of the second kin
uDi u5det(Di), and the shorthand notation

ur2r 8u i5@~r2r 8!Di
21~r2r 8!#1/2

was used.
Let F i denote the restriction ofF to the subdomainV i ,

¹•Di¹F i~r !2ki
2F i~r !52Qi~r !in V i ,
8-5
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where the source termQi5Q0d i ,1 is nonzero only fori
51. If G i is the interface betweenV i and V i 11 , 1< i<n
21, the subsolutionsF i must satisfy the interface condition

F i uG i
5F i 11uG i

5n i ,

] iF i uG i
5] i 11F i 11uG i

5r i , 1< i<n21,

where we used the abbreviated notation

] i5n̂•Di¹

for the conormal derivatives. Here,n̂ denotes the exterio
unit vector normal to the surfaceG i or G i 21. On the exterior
surface of the body, denoted byG0, we have the Robin
boundary condition@cf. Eq. ~28!#

n012r050, ~34!

where

n05F1uG0
, r05]1F1uG0

.

By applying a second Green’s theorem inV i , we obtain the
representation

F i~r !5S E
G i 21

2 E
G i
D @Gi~r ,r 8!] iF i~r 8!

2F i~r 8!] iGi~r ,r 8!#dS~r 8!1qi~r !, ~35!

where it is understood thatGn5B and the source termqi is

qi~r !5 E
V i

Gi~r ,r 8!Qi~r 8!dr 8.

To obtain the boundary integral equations, letr approach first
the outer boundaryG i 21. By using the properties of the laye
potential operators@11# and the notation introduced earlie
we obtain

Ci 21
1 ~r !n i 21~r !1 E

G i 21

@] iGi~r ,r 8!n i 21~r 8!

2Gi~r ,r 8!r i 21~r 8!#dS~r 8!2 E
G i

@] iGi~r ,r 8!n i~r 8!

2Gi~r ,r 8!r i~r 8!#dS~r 8!5qi~r !, 1< i<n. ~36!

Observe that above the first integral is singular while
second one has a continuous kernel. Similarly, letting
variabler approach the inner interfaceG i , we arrive at the
equation
03190
e
e

Ci 21
2 ~r !n i~r !2 E

G i

@] iGi~r ,r 8!n i~r 8!

2Gi~r ,r 8!r i~r 8!#dS~r 8!1 E
G i 21

@] iGi~r ,r 8!n i 21~r 8!

2Gi~r ,r 8!r i 21~r 8!#dS~r 8!5qi~r !, 1< i<n21.

~37!

The extra functionCi
6(r ), arises due to singularities on th

boundary. However, as shown in@12,13#, this term does not
need to be calculated explicitly and can be obtained in
rectly by utilizing some simple physical considerations.
particular, we haveCi

1(r )5Ci
2(r )5 1

2 when the observation
point lies on a smooth surface, which is the case conside
here.

Using Eq.~34! to trivially eliminate one unknown, Eqs
~36! and ~37! constitute a system of 2n21 coupled integral
equations for the 2n21 unknown functions
n0 , . . . ,nn21 ,r1 , . . . ,rn21. Solving for these functions, the
representation formula~35! yields the fieldF.

Similar to the FEM, the BEM equations are solved
discretizing each surfaceG i into Pi elements withNi verti-
ces, but here bothn i and r i are approximated by the noda
basis functions~restricted toG i)

n i~r !' (
j 51

Ni

n i , jc i , j~r !, r i~r !' (
j 51

Ni

r i , jc i , j~r !. ~38!

The result is a system of dense unsymmetric block matr
which are solved using a preconditionedGMRES solver.

D. Connection between 2D and 3D models

Consider the diffusion equation~27! and the boundary
condition ~28! in the case that the bodyV,R3 is a long
cylinder. We assume that it is long enough to justify an in
nitely long cylinder as a model, i.e.,V5U3R, where
U,R2 is the horizontal intersection of the cylinder. Let u
assume that the sourceQ05Q0(x,y,z) is restricted to a finite
section of the cylinder, i.e.,Q0(x,y,z)50 for uzu large. Then
the fieldF satisfies

Fu uzu→`50, ¹Fu uzu→`50. ~39!

Assume further thatD5D(x,y) and ma5ma(x,y), (x,y)
PD, i.e., the material parameters are constants along
cylinder. Let us factor the tensorD as

D5FD' w

wT D33
G , D'PR232, wPR231.

Further, by writing

¹F5~]xFe11]yFe2!1]zFe35¹'F1]zFe3 ,

we have

D¹F5D'¹'F1w]zF1~w•¹'F1D33]zF!e3 ,
8-6
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and further, by using the fact thatw is independent ofz,

¹~D¹F!5¹'•D'¹'F1]zu, ~40!

where the functionu is

u5¹'•~wF!1w•¹'F1D33]zF

5~¹'•w!F12w•¹'F1k33]zF.

Let us define the vertically averaged field,

Fav~x,y!5 E
2`

`

F~x,y,z!dz.

By integrating Eq.~27! over the vertical axis and using th
decomposition~40!, we may argue first that

E
2`

`

¹~D¹F!dz5¹'•D'¹'Fav1uz52`
z5` u5¹'•D'¹'Fav,

FIG. 3. Amplitude on the boundary in the anisotropic mod
using Monte Carlo simulation, FEM, and BEM. The MC and BE
curves have been normalized using the FEM/MC and FEM/B
relations, respectively, ath545°.

FIG. 4. Phase angle on the boundary in the anisotropic mo
using Monte Carlo simulation, FEM, and BEM.
03190
by the boundary conditions~39!. Hence, we see thatFav
must satisfy

2¹'•D'¹'Fav1S ma2
iv

c DFav5Q0,av

in U, whereQ0,av5Q0,av(x,y) is the averaged source

Q0,av~x,y!5 E
2`

`

Q0~x,y,z!dz.

In particular, if the original source is a point source
(x,y,z)5(x0 ,y0 ,h), i.e., Q05Q0(v)d(x2x0)d(y2y0)d(z
2h) we have Q0,av(x,y)5Q0(v)d(x2x0)d(y2y0), i.e.,
the sourceQ0,av is a point source in the 2D model as well. T
make the 2D boundary data compatible with the 3D data,
need to integrate the boundary data along the cylinder
particular, if we model the 3D data collection by vertical lin
detectors, they correspond to 2D point detectors.

E. Results

Figures 3 and 4 show the results calculated with Mo
Carlo ~MC! simulation (109 photons!, the FEM, and the
BEM. Figure 3 plots the amplitude~using a logarithmic
scale! and Fig. 4 the phase angle of the complex pho

l

el

FIG. 5. Internal amplitude field calculated using the FEM.

FIG. 6. Internal phase angle field calculated using the FEM.
8-7
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density measured on the boundary. Because of the diffe
source models and intensities, the amplitude was scaled
the MC and BEM curves using the FEM/MC and FEM/BE
ratios, respectively, calculated at the boundary position an
h545°, as the scaling factors. Figures 5 and 6 show inte
maps of the same quantities. Figure 5 plots the internal
plitude field and Fig. 6 the internal phase field of the bo
calculated using the FEM.

To demonstrate the effect of the strength of the anisotr
on data, the FEM calculation was performed using differ
values for the fractionf in the anisotropic region. Figures
and 8 demonstrate the effect of varyingf on boundary data.

IV. CONCLUSIONS

In this paper we have proposed a model for anisotro
scattering that can be applied using the radiative tran

FIG. 7. The logarithm of the amplitude on the boundary cal
lated with the FEM using different values of the anisotropy fract
f. From top to bottom, the curves were calculated usingf 5 0.9, 0.8,
0.7, 0.5, 0.3, 0.1, and 0, corresponding to the isotropic case.
.L

U.

d

ed
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model. By deriving the diffusion approximation using th
scattering model, we obtained the corresponding anisotro
diffusion model and were able to compare the radiat
transfer and the diffusion models in the anisotropic ca
Numerical examples were calculated using a relativ
simple case for the anisotropy. Based on the results, the
fusion model is able to describe the anisotropic behav
relatively well, provided that the anisotropy considered
simple enough to be presented within the diffusion fram
work.
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- FIG. 8. The phase angle on the boundary calculated with
FEM using different values of the anisotropy fractionf. From bot-
tom to top, the curves were calculated usingf 5 0.9, 0.8, 0.7, 0.5,
0.3, 0.1, and 0, corresponding to the isotropic case.
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