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Anisotropic effects in highly scattering media

Jenni Heind
Laboratory of Biomedical Engineering, Helsinki University of Technology, P. O. Box 2200, 02015 HUT, Finland

Simon Arridgé and Jan Sikora
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom

Erkki Somersal®
Laboratory of Mathematics, Helsinki University of Technology, P. O. Box 1100, 02015 HUT, Finland
(Received 5 May 2003; published 18 September 2003

In this paper, we study anisotropic scattering and light propagation models applicable to diffuse optical
tomography. We propose a model for anisotropic scattering in the radiative transfer framework and derive the
corresponding anisotropic diffusion model. To verify the anisotropic diffusion model, we consider the case of
a simple anisotropic scattering model also presentable within the diffusion approximation. For numerical
computations, we present a three-dimensid88l) anisotropic Monte Carlo model and 2D finite element and
boundary element solutions of the anisotropic diffusion model, and compare the results of the simulations.
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I. INTRODUCTION approach to model anisotropic light propagation presented in
Optical tomography1] is a relatively new and developing [6] was based on the continuous-time random walk model.
noninvasive medical imaging modality. In optical tomogra-  In this paper, we consider in more detail an anisotropic

phy, measurements of scattered and transmitted near-infrarégattering and light propagation model based on the radiative

light on the surface of the body are used for reconstruction off@nSfer equation. We present a possible model for aniso-

. e ; SR tropic scattering applicable in the radiative transfer frame-
the internal distribution of optical properties inside the body.WO?k and then gerisg the corresponding anisotropic diffusion

The strong scattering of near-infrared light in most humana proximation. In our numerical experiments, the anisotropic

tissues renders the related inverse problem of the estimatio ffusion equation is solved using both finite element and

of the optical properties a highly involved one, requiring boundary element methods, and the results compared to a

?‘d"anced. modeling and reconstruction techniques. One POIRfonte Carlo simulation based on the radiative transfer equa-
in theoretical developments toward a more succesful estimar | and the anisotropic scattering model

tion is the investigation of light propagation models that can

be used to prediCt bOUndary measurements more falthfully 1I. SCATTERING AND LIGHT PROPAGATION MODELS
Several human tissue types have properties that depend

not only on location but also on direction. One example is A. Radiative transfer equation

the Wh|te matter of the br.ain, Wh.ere the orientation of the In 0ptica| tomography ||ght propagation is genera”y mod-
axon fiber bundles gives rise to directionally dependent difgled using the radiative transfer equatitRTE) [7], also

fusion properties of water. Another example of structural anknown as the Boltzmann equation. For time dependent prob-
isotropy is the muscle fibers. Anisotropic light propagation|ems, this is written

has been measured in chicken breast tig@leand human

skin[3] and dentin4]; hence there is good reason to believe 10 . -

that such structural anisotropy is seen in the optical regime. (E E—’_S'V—i_ﬂa(r)"_/-”s(r)) o(r,st)

Proper modeling and understanding of the effects of anisot-

ropy may provide valuable information for imaging and re- A n, NNy -

construction in optical tomography. =Ms(r)fsz®(s,s (s’ s +a(r.st),
A commonly used model for light propagation in optical &

tomography is the isotropic diffusion equation, which can be

derived from the equation of radiative transfer under certairwhere u, and us are the absorption and scattering coeffi-

conditions often met in biological tissue. To handle a”iso'cients, respectivelyg(r,5t) is the radiance at position

tropic media, in[5], an anisotropic form of the diffusion

equation was derived and used to investigate the effects o

anisotropy on image reconstruction. Another diffusionlike

ith direction of propagatiors, c is the speed of lightg
enotes the source term, afdis thephase functiorior the
scattering. In operator form we write this as
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or the differential scattering kerné represents the prob-
ability density of a particle scattering from directish into

s In isotropic media, it is assumed to be stationary—i.e.,
dependent only on the angle between incoming direcsion
and outgoing directios. Then we can write

~ o — oo
Oiso(s,8,1=0(s51). FIG. 1. A schematic representation of anisotropic scattering. The
In anisotropic media this is no longer the case. The questioﬁ[]"jlln direction of anisotropy s parallel o t.he axis of th? cylinder.

. ] ~n he component of light parallel to the axis is preserved in the scat-
then arises as to the appropriate form €(s,s’,r). tering, whereas the perpendicular component is randomly oriented,
forming a cone shape for the possible scattering directions.

B. Scattering phase function

1. Properties of the scattering phase function , 1 1—92
_ _ _ Ha(e.@"i9)=5 — ~ O
The following properties of the phase function are appar- 1+g°—2gcos(e—¢')
ent on physical groundg1) the probability density of scat-
tering cannot be negative, Note thatH, is not simply the integral over the azimuthal
direction of Hz. H, has a Fourier series representation
0(s5)=0 V58 e (3)  [rather than the Legendre series of Ef).:

(2) there is reciprocity of light propagation, 1 17
Holg.¢) =5+~ 2 g"cosln(e—¢)]. (10

0(s58)=0(-5,-9), (4)
and(3) the probability of scattering over the sphere is unity 3. Anisotropic scattering
regardless of the incoming radiation direction, As a model of the anisotropic case consider the case of an
infinite cylinder oriented along the axis [3]. If we assume
J' O(ss)ds=1 V s e (5) thatthe direction of scattering is unchanged ine have the
S model
2. Isotropic scattering 0. (38)=0(9.9" ’.
anIS({SiS) ( ’ PP 1gJ_)

In the isotropic case a convenient model o[, is the

Henyey-Greensteifunction[8] =6( cos¥— cosd’ )Ha(e,0";9,). (11)

1 1-g? This has the requisite properti¢3)—(5). We might also
Hs(s-s';g9)= — — , (6) choose a propefsymmetrig function Z(9,9') such that
4m (1+g?—2gs-5)%?
which has the useful property that its Legendre expansion is f Z(9,9") sinddo=1
0

given by powers of the parametgr

. | in place of thes function in Eq.(11). Figure 1 illustrates this
0= J'Szp'(T)@)(T)dS' =g, (7) " model for anisotropic scattering.
By writing the spherical harmonics
and (using an addition theorem for Legendre polynomials

we have the expansion Y1 m(%,0)=P(x)€™, x= cosd,
~a c = 2 R where P["(x) are the associated normalized Legendre poly-
Hs(s's ;g)=2| > 9 Yim($)Yim(S), (8  nomials, it is easily verified that

m=—

where Y, , are the spherical harmonics. Hege= (—1,1) J 0,,:d59)Y (§’)d§’=g‘m‘Y (9
serves as a measure of the forward scattering bias, gvith g anmse™>/hhm Lohm
=0 corresponding to uniform scatterihg.

The two-dimensional analog of this function is and

0 anisd 5.5 Y, m(9ds=g™Y, (5,
The factorg is frequently termed thanisotropy factorwhen fSZ anisd $,5')Y1,m(S) A=, m(S')

considering the directionally independent scattering case. However,
we will use the ternmbias factorto avoid confusion. so we have the biharmonic expansion
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co . ) 19
@ams({s%'):Z Z| MY, W(SHY M. (12 (g E+ua(r))<I>(r,t)+V-J(r,t)=Qo(r.t), (21)
e o 19 1
C. Diffusion approximation (E E+Ma(r) + (1—g),LLS(r))J(r,t)+ §V(I>(r,t) =Qq(r,1).
1. Isotropic diffusion approximation (22

A standard approximation method for the RTE is to eX-Equations(21) and (22) are termed thé®1 approximation.

pand the radiance) and the source termg in Eq. (1) into 14 get a single second order partial differential equation we
spherical harmonics and truncate the series. The sphericg|ske two more simplifications, assuming tldt dt is neg-

harmonics expansions can be written as ligible in Eq. (22) (or, alternatively, proportional td) and
| that the anisotropic source terms are zero, (g=0. Then

$r9=20 2 m(Yim(9), (13 J= DV, (23
w where thediffusion coefficients defined by
Ar9=2 2 Aml()Yim(9)- (14) L
- (24
Inserting the isotropic scattering phase functi@ in the S(uat ps)

operators in Eq. (2) yields the expansion and u.=(1—g)us is thereduced scattering coefficierfi-

o | nally, we arrive at the diffusion equation as normally used in
S(pl¢l=p 2 ¢'dm(NYVim(3. (15  optical tomography:

m=—|

190
For the diffusion model the spherical harmonics expan- ¢ 2 ®(1.O=V-D(NVO(r,t)+ ur)(r,1)=Qo(r.1).

sion is taken only up to first order. Fap, truncating the (25)
series(13) at1=1 yields after some manipulation

1 3 2. Anisotropic diffusion approximation

#(r,st)= Efsz¢(r,s’,t)ds’+ P f323'¢(r13',t)d5'- Utilizing Eqg. (12) we have
- |m a

Similarly, the first order approximations for Eq&l4) and S(,us)[gé]—,uszl: m;| 91" Dim(N Y m(S).

(15) are obtained by truncating the seried atl.
Next, introducing some standard notation, gih@ton den-  The diffusion equation results from the termination of this
sity is defined as series at=1. Employing the standard derivation, we get the
anisotropic diffusion equation

° S @D =V-DVO(r,) +poND(1,H)=Qo(r 1),
and thephoton currentas (26)
_| 2 26 A where thediffusion tensoiis given by
J(r,t)—fszw(r,st)ds, (18)
1
while the corresponding source terms are ig@ropic and D= §[(Ma+ﬂs)|_:“ssl]71
dipole terms
with
Qo(r,t)= Jszq(r,s,t)ds, (19 10 0
|= 1 0
Ql(r,t)=fszsq(r,s,t)ds. (20 0 01
. . - - d
By integrating the RTH1) and the RTE multiplied by an
over S? and using the first order approximations for the ra- g 0 0
diance ¢ and the source termy and the notation in Egs.
(17— (20), we arrive after some lengthy calculations at a set Si={ 0 a
of coupled equations: 0 O
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We can also consider the case where we imagine a mix-
ture of oriented fibers with densitiyug and isotropic scatter-
ers with density (+f)us (Wheref is a fraction O<f<1).2
Let the latter have biagy. The resulting diffusion tensor will
be

fg, +(1-"1)gg 0 0
S,= 0 fg, +(1-f)go 0
0 0 f+(1-"f)go

To obtain the case where the fibres are oriented along 6

I —
" 5 10 15r[mm]
another directiors; = (£, £) we only need to rotate the tensor:
FIG. 2. Geometry used in the simulations.

-
D—RDR". IIl. NUMERICAL EXPERIMENTS
3. Frequency domain In our numerical experiments, we compare the results
. . . from a Monte Carlo simulation based on the radiative trans-
A common experimental method is to modulate the inteN1o model and from the finite elemet®EM) and boundary

sity of the Iight source with a radio-frequency signal. _For aeIement(BEM) methods based on the diffusion model. The
source function modulated with angular frequercyhe dif- Monte Carlo simulations were performed in a three-

fusion equation can be written in the frequency domain bydimensionaI(SD) cylinder oriented parallel to the axis,

taking a Fourier transform of the time domain diffusion with a cross section as depicted in Fig. 2, and the FEM and
equation(26): BEM simulations in an equivalent 2D circle. The photons are
incident on the domain at the positioy=0° on the bound-

fw ary, and measured all around the boundary of the domain.
- ?db(r;w)—vD(r)V(I)(r;w)+,ua(r)<I>(r;w)=Q0(r;w), The outer- and innermost layef¥, and ()5 in the circle
(27 are isotropic, and the middle lay€), is anisotropic with the
direction of anisotropy parallel to theaxis as illustrated by
the horizontal stripes. In the isotropic layers the scattering is
assumed to be uniform, i.e., the forward scattering bias is
assumed to have a valge=0. The anisotropic layer is as-
sumed to consist of a mixture of oriented fibédensityf,
direction of scattering unchangednd isotropic scatterers

In this work, we use the so called collimated source ap{density (1-f), biasg,=0]. The parameter values used in
proximation[9], where the light source is modeled with a the simulations are listed in Table I.
collimated pencil beam perpendicular to the surface. In this
approximation, we write the source term as a point source
below the surfaceQy(r; )= Qu(w)d(r—rs), whererg is ) ) )
the source position. For the boundary condition, we assume !N the Monte Carlo simulation, the propagation of a pho-
that the inward directed current at each point on the bound@n or & photon package is simulated through the medium.
ary is zero. Within the diffusion approximation, this assump-1Nis is done by following the photon’s path and sequentially

tion leads to a so-called Robin boundary condition: modeling each event the photon undergoes during its travel
in the medium.

- The anisotropic Monte Carlo simulation code used here
®+2n-DVO =0, (28)  was based on an isotropic cofi®0] and proceeds in the
following way. First, a photon package is launched into the

wheren is the outward unit vector normal to the surface and ABLE | Th | qf ical calculati
the refractive index is assumed to be 1. The boundary datd’ - The parameter values used for numerical calculations.

consist of measured outward flik,,= —n-DV® at points

where® (r; w) is the complex density arising from the inten-
sity modulated parQq(r; ) of the source term.

4. Source and boundary conditions

A. Monte Carlo simulation

) - Isotropic media Anisotropic media
rm, the optode locations, on the boundai§2. Using the
boundary conditior(28), the outward flux within the diffu- Ma 0.1 mm* 0.1 mm*!
sion approximation is simply o, {(fm) =3P (). M 10 mm ! 10 mmi?
g 0
f 0.9
2Technically we might have to consider more carefully the mean- Jdo 0
ing of the scattering coefficient for fibers since it may be direction- ‘R 0

ally dependent too. Sg8] for a fuller discussion.
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domain perpendicular to the boundary at the source position. )
Subsequently, at each step, gdrt-exp(— )] of the pack- A= fﬂ V- DV ifedr+ fﬂ (Ma— ?) Yitpedr

age is absorbed, whereis the propagation length. The

propagation length is drawn from an exponential distribution 1

with mean proportional to the scattering coefficient. In the + Jmf $ihedS, (3D
isotropic medium, the new propagation direction is drawn

from a uniform probability distribution in solid angle. In the gng g is anN,—vector ;= Qoy;(rs).

anisotropic medium, an anisotropic scattering event takes |n two dimensions, we write the diffusion tensbras
place with probabilityf; otherwise an isotropic scattering

event is modeled as in the isotropic layers. In the anisotropic D(r)=R(r)diagd A 1(r),\o(N)JR()T, (32
scattering, thex component of the direction vector is pre-

served and only thgz components are redrawn from a uni- WhereR(r) is a 2X2 real orthogonal matrix, and

form distribution.

In the Monte Carlo simulation, the source was assumed to N(r)=
be located at a single point<15,0,0) on the boundary. )
However, to compare the results with the 2D diffusion com- ) ] o ,
putations, the detectors were modeled as line detectors pdf the isotropic case we have simi{°=b3°=g=0. In the
allel to the axis of the cylinder on the boundary of the cyl-anisotropic case considered here, we haf&*=f+(1
inder, and the detected light was recorded as a function of the f)go="f andb3™*=fg, +(1—-f)g,=0.
boundary position angle; only. The phase shift and the The representatio_(SZ) can alsq be'interpreted as an ei-
complex intensity of the package on the boundary were calgenvalue Qecomposmon of the diffusion tensor. The eigen-
culated based on the path length of the package. The apertuf@!uesh;, j=1,2, present the strength of the anisotropy, and
of the cylinder in thez direction was 5 mm, and photons the direction of anisotropy is confined in the matRx
exiting from the ends of the cylinder were recorded as lost.

1
3{ua(r)+[1=bj(r) Jugr)}’

i=1,2. (33

C. Boundary element method

B. Finite element method In the BEM formulation, we assume that the boQyis

For implementing the finite element method, we use thélivided into nested subdomaii;, 1<i<n, where(), is
so-called Galerkin formulation. First, we write the varia- the outermost one. Each subdomain is characterized by con-
tional formulation of the diffusion equatiof27). By multi- ~ Stant material parameters. LBf and w,; denote the diffu-
plying Eq.(27) by a test functiony, integrating by parts over SIOn tensor and absorption coefficient(d;. We denote
), and using the Gauss and Green’s theorems, we arrive at K= (10— iwlc)L2
the weak formulation of the diffusion equation: Fiddsuch i~ Hai '

that where the branch of the square root is chosen so th&; Re

i 1 >0. The Green'’s function§&; corresponding to each subdo-
f Vi-DVOdr+ f (,ua— ?) Yddr+ f Ez,b(bds main are defined as solutions of the equations
Q Q 9]

) ) "N _ k2GS, N — _ ! ; 2
=Qot(rs) (29 V-DiVG(r,r")=kiGi(r,r')==48(r—r') in R

with the asymptotics

Y yeHY(Q), whereH(Q) is a predefined function space Gi(r,r")|iy1u=0.
(Sobolev spagdefor the test functions. In Eq29), the Robin Rt =
boundary conditior{28) and the collimated source condition
have been taken into account.

In the finite element approximation, the domd#inis di-
vided into finite elements and the solution is approximated

By a change of variables—T =D, *%, one can verify that
G; can be written as

1
- i i . N — HO ik lr =1’ ) =———— Jr=r'l
by nodal-based basis functions, Gi(r,r") 7 DilHO (ikilr=r"]) 2’7T|Di|K0(kl|r r'li,
N, whereKj, is the modified Bessel function of the second kind,
O~ aiyi(r) (30) |D;|=det(D;), and the shorthand notation
: IR !
=1

[r=ri=[(r=r")D; (r=r")J¥2

whereN,, is the number of nodes in the finite element meshwas used.

By choosing the test functios in Eq. (29) to be one of the Let @; denote the restriction ob to the subdomair};,
basis functions, we arrive at the matrix equatian= g3,

whereA is theN, X N,, symmetric matrix with entries V-DV®;(r) —kidi(r)=—Qi(r)in O,
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where the source tern®;=Qyd; , is nonzero only fori
=1. If T'; is the interface betweef); and Q;,, 1<i=<n
—1, the subsolution®; must satisfy the interface conditions

(I)i|1“i:q)i+l|l“i: Vi,

1<i

3 ®ilr, =i+ 1Pivalr, = pi,

where we used the abbreviated notation

&i=n-DiV

for the conormal derivatives. Here, denotes the exterior
unit vector normal to the surfadg or I';_;. On the exterior
surface of the body, denoted Hy,, we have the Robin
boundary conditioricf. Eq. (28)]

Vot 2pe=0, (34)
where
Vo:q)ﬂro,

po=31P1r,.

By applying a second Green'’s theorem(ly, we obtain the
representation

‘I’i(r)=< fril_ Jri>[Gi(r,r')¢?i®i(f')
—®i(r")g;Gi(r,r")JdS(r")+q;(r), (35

where it is understood thdt,=J and the source term, is
ai(r)= JQ_ Gi(r,r)Q(r")dr".

To obtain the boundary integral equations,rlejpproach first
the outer boundar¥/; _;. By using the properties of the layer
potential operatorll] and the notation introduced earlier,
we obtain

Cian A0+ [ 146w
i—1
~GUr o AIASE) - [ G ()

=Gi(r,r)pi(r)]dS(r')=qi(r), 1si=n. (36

PHYSICAL REVIEW E 68, 031908 (2003
Cann - [ 146w m)

—Gi(r,r’)pi(r’)]ds(r’)+f [3iGi(r,r")vi_4(r")

i—-1
1<sisn-—1.
(37)

The extra functiorC;"(r), arises due to singularities on the
boundary. However, as shown [ih2,13], this term does not
need to be calculated explicitly and can be obtained indi-
rectly by utilizing some simple physical considerations. In
particular, we haveS;" (r)=C; (r)=3 when the observation
point lies on a smooth surface, which is the case considered
here.

Using Eq.(34) to trivially eliminate one unknown, Egs.
(36) and (37) constitute a system ofr2-1 coupled integral
equations for the 2-1 unknown functions
Vg, -+ - Vn—1,P1s - - - Pn—1. S0lving for these functions, the
representation formuléss) yields the fieldd.

Similar to the FEM, the BEM equations are solved by
discretizing each surfack; into P; elements withN; verti-
ces, but here bothy; andp; are approximated by the nodal
basis functiongrestricted tol’;)

=Gi(r,r)pi—1(r")1dS(r)=qi(r),

N N
w0~ 2 vt e~ 2 pidi(n). (39
The result is a system of dense unsymmetric block matrices
which are solved using a preconditionesiReS solver.

D. Connection between 2D and 3D models

Consider the diffusion equatio27) and the boundary
condition (28) in the case that the bod@ CR? is a long
cylinder. We assume that it is long enough to justify an infi-
nitely long cylinder as a model, i.eQ=UXR, where
UCR? is the horizontal intersection of the cylinder. Let us
assume that the sour€® = Qq(X,Y,2) is restricted to a finite
section of the cylinder, i.eQq(x,y,z) =0 for |z| large. Then
the field® satisfies

(D||Z‘ﬂw20, V(D||Z‘Hw20. (39)
Assume further thaD=D(x,y) and uz=ua(X,y), (X,y)

eD, i.e., the material parameters are constants along the
cylinder. Let us factor the tens@ as

D, w

2x1
we R" .
W' Dy

D= , D, eR?*?

Further, by writing

VO =(9,0e +3d,Pe)+d,Pez=V, +4,Pe;,

Observe that above the first integral is singular while the
second one has a continuous kernel. Similarly, letting theve have

variabler approach the inner interfade , we arrive at the
equation

DV®=D, V, ®+wa,d + (- V, &+ Dasd, )6,
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using Monte Carlo simulation, FEM, and BEM. The MC and BEM -
curves have been normalized using the FEM/MC and FEM/BEMBY the boundary condition§39). Hence, we see thab,,

relations, respectively, aj=45°. must satisfy
. . 1)
and further, by using the fact thatis independent of, -V, DLVLq)aV+(Ma_ - ® 5= Qo av
V(DV®)=V,-D, V, ®+9,u, (40

in U, whereQg 5= Qo afX,Y) is the averaged source
where the functioru is

QoafX,y) = f Qu(x.y.2)dz.
U=V, - (WD) +W-V, D + Dy, —o

=(V, - W)D+2wW- V, ® + x339,P. In particular, if the original source is a point source at
(X,y,Z) = (XO Yo vh) ' i'e'v QOZ QO(w) 5()(_ XO) 5(y_ yO) 5(2
Let us define the vertically averaged field, —h) we have Qg a(X,y) = Qo(®) 8(X—Xo) 5(Y—VYo), i.e.,
the source ,,is a point source in the 2D model as well. To
o make the 2D boundary data compatible with the 3D data, we
DX, y)= f ) ®(x,y,z)dz. need to integrate the boundary data along the cylinder. In

particular, if we model the 3D data collection by vertical line

. . . . . detectors, they correspond to 2D point detectors.
By integrating Eq.(27) over the vertical axis and using the

decomposition(40), we may argue first that

E. Results
o e Figures 3 and 4 show the results calculated with Monte
f_ooV(DV(D)dZ:VJ_'DJ_VJ_(I)av_Hz:—oou:VJ.'DJ_VJ_q)aV! Carlo (MC) simulation (18 photons, the FEM, and the

BEM. Figure 3 plots the amplitud€using a logarithmic
scale and Fig. 4 the phase angle of the complex photon

70
60 g0
® 5ol
] 50 50
D =
S 40} 3
% 40 ;5),
© 30 I =,
o =2
£ 20} — MC 0E
a -— FEM o
10} BEM 20 8
a
0 1 1 1 1 1
0 60 120 180 240 300 360 10
nldegrees]
FIG. 4. Phase angle on the boundary in the anisotropic model
using Monte Carlo simulation, FEM, and BEM. FIG. 6. Internal phase angle field calculated using the FEM.
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10°

107}
[0
©
=
g 107}
©

10°}

. . : . . 0 . . X . .
0 60 120 180 240 300 360 0 60 120 180 240 300 360
1 [degrees] 1 [degrees])

FIG. 7. The logarithm of the amplitude on the boundary calcu-  FIG. 8. The phase angle on the boundary calculated with the
lated with the FEM using different values of the anisotropy fractionFEM using different values of the anisotropy fractibrFrom bot-
f. From top to bottom, the curves were calculated uging0.9, 0.8,  tom to top, the curves were calculated usirg 0.9, 0.8, 0.7, 0.5,
0.7, 0.5, 0.3, 0.1, and 0O, corresponding to the isotropic case. 0.3, 0.1, and 0, corresponding to the isotropic case.

) ) model. By deriving the diffusion approximation using this
density measured on the boundary. Because of the differertattering model, we obtained the corresponding anisotropic

source models and intensities, the amplitude was scaled fQjifrusion model and were able to compare the radiative
the MC and BEM curves using the FEM/MC and FEM/BEM yransfer and the diffusion models in the anisotropic case.

ratios, respectively, calculated at the boundary position anglg,merical examples were calculated using a relatively

7=45°, as the scaling factors. Figures 5 and 6 show internalimpe case for the anisotropy. Based on the results, the dif-
maps of the same quantities. Figure 5 plots the internal amy,sion model is able to describe the anisotropic behavior
plitude field and Fig. 6 the internal phase field of the bodyyg|atively well, provided that the anisotropy considered is

calculated using the FEM. , simple enough to be presented within the diffusion frame-
To demonstrate the effect of the strength of the anisotropy,qrk.

on data, the FEM calculation was performed using different
values for the fractiorf in the anisotropic region. Figures 7 ACKNOWLEDGMENTS
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